ПРОХОЖДЕНИЕ СИГНАЛОВ РЕЛЕЙНОЙ ЗАЩИТЫ ЧЕРЕЗ ЭЛЕКТРОМАГНИТНЫЕ ТРАНСФОРМАТОРЫ ТОКА

Техника регистрации и обработки сигналов релейной защиты В энергосистемах вступает В новую стадию развития использования превосходных возможностей микропроцессорной элементной базы. Ho ключевыми элементами трактов преобразования сигналов по прежнему остаются электромагнитные трансформаторы тока (TT).

В этих условиях, применительно к контролю параметров энергосистем, релейной защите и осциллографированию процессов, наиболее важное значение имеет требование неискажающей передачи сигналов от источника (первичной цепи) до приемника (устройства обработки сигналов). Реализация желаемых процедур идеальной передачи первичных сигналов во вторичные цепи с помощью TT для целей регистрации и автоматизации процессов управления энергосистемами является важной и актуальной научно-технической проблемой, а научно обоснованные предложения, выводы и рекомендации, способствующие ее решению, могут быть полезными для специалистов в области релейной защиты.

Путем математического и физического моделирования одиночных электромагнитных TT установлено, что их преобразовательные свойства в линейных режимах работы при использовании в системах релейной защиты достаточно точно отображаются передаточной функцией [1,2]:

$$H_{TT}(p) = \frac{I_2(p)}{I_1(p)} = \frac{bp}{a_2p^2 + a_1p + a_0},$$

где $I_2(p)$ и $I'_1(p)$ - изображения по Лапласу вторичного и приведенного ко вторичной цепи первичного токов; $a_0 - a_2$, b - постоянные коэффициенты, определяемые параметрами обмоток и сердечника TT.

В соответствии с Г- образной схемой замещения ТТ (рис. 1): $a_0 = R_{\Pi}R_2$; $a_1 = R_{\Pi}(L+L_2) + LR_2$; $a_2 = LL_2$; $b = R_{\Pi}L$; $R_2 = r_2 + R_H$; $L_2 = L_{d2} + L_H$; L и R_{Π} - приведенные ко вторичной обмотке индуктивность намагничивания и активное сопротивление потерь TT; L_{d2} и r_2 - индуктивность рассеяния и активное сопротивление вторичной обмотки TT; L_H и R_H - индуктивность и активное сопротивление нагрузки TT.

Рис. 1

Пусть на вход TT на временном интервале от 0 до τ воздействует сигнал x(t) синусоидальной формы:

$$x(t) = \begin{cases} \sin \omega_0 t & npu \ 0 \le t \le \tau; \\ 0 & npu \ t < 0, t > \tau. \end{cases}$$

Задача прохождения отрезка синусоидального сигнала через TT во временной области приводит к дифференциальному уравнению Абеля, аналитическое решение которого громоздко и его трудно использовать для дальнейшего анализа [3].

Поэтому, с целью упрощения процедуры анализа и получения наглядных зависимостей, входной сигнал можно представить в виде разности двух сигналов (рис. 2):

$$x(t) = x_1(t) - x_2(t)$$
.

Рис. 2

Здесь:

$$x_{1}(t) = \begin{cases} \sin \omega_{0}t & npu \quad t \ge 0; \\ 0 & npu \quad t < 0. \end{cases}$$

$$x_{2}(t) = \begin{cases} (-1)^{n} \sin \omega_{0}(t-\tau) & npu \quad t-\tau \ge 0; \\ 0 & npu \quad t-\tau < 0; \end{cases}$$

где $\tau = \pi \cdot n / \omega_0$; *n* - целое число полупериодов сигнала; ω_0 - угловая частота входного сигнала.

Реакция ТТ на входной сигнал *x*(*t*) представляет собой разность двух сигналов:

$$y(t) = y_1(t) - y_2(t)$$
,

где $y_1(t)$ - реакция TT на сигнал $x_1(t)$; $y_2(t)$ - реакция TT на сигнал $x_2(t)$.

При воздействии на вход ТТ сигнала $x_1(t)$ изображение по Лапласу выходного сигнала определяется так:

$$y_1(p) = x_1(p) \cdot H_{\mathrm{TT}}(p).$$

Здесь $x_1(p) = \frac{\omega_0}{p^2 + \omega_0^2}$ - изображение по Лапласу входного сигнала $x_1(t)$.

Тогда

$$y_1(p) = \frac{\omega_0}{\omega_0^2 \left(\frac{1}{\omega_0^2} p^2 + 1\right)} \frac{bp}{a_0 \left(\frac{a_2}{a_0} p^2 + \frac{a_1}{a_0} p + 1\right)}$$

Или

$$y_1(p) = \frac{T_0}{T_0^2 p^2 + 1} \frac{b_1 p}{d_2 p^2 + d_1 p + 1},$$

где

$$T_0 = \frac{1}{\omega_0}; \ b_1 = \frac{b}{a_0} = \frac{L}{R_2}; \ d_2 = \frac{a_2}{a_0} = \frac{LL_2}{R_\Pi R_2};$$
$$d_1 = \frac{a_1}{a_0} = \frac{R_\Pi (L + L_2) + LR_2}{R_\Pi R_2} = \frac{L + L_2}{R_2} + \frac{L}{R_\Pi}.$$

Знаменатель дроби $y_1(p)$ целесообразно представить в виде произведения простых сомножителей.

Учитывая реальное соотношение коэффициентов:

$$d_1 > 2\sqrt{d_2}$$
, можно записать:
 $d_2 p^2 + d_1 p + 1 = (T_1 p + 1)(T_2 p + 1),$
где $T_{1,2} = \frac{d_1}{2} \left(1 \pm \sqrt{1 - \frac{4d_2}{d_1^2}} \right).$

Тогда изображение выходного сигнала можно представить так:

$$y_1(p) = \frac{T_0 b_1 p}{(T_0^2 p^2 + 1)(T_1 p + 1)(T_2 p + 1)}$$

Оригинал реакции TT на входной сигнал x_1 имеет следующий вид [4]: $y_1(t) = T_0 b_1 [-C \sin(\omega_0 t + \Theta) + C_1 e^{-\alpha_1 t} + C_2 e^{-\alpha_2 t}]$.

Здесь:

$$C = \frac{1}{\sqrt{(T_0^2 + T_1^2)(T_0^2 + T_2^2)}}; C_1 = \frac{T_1}{(T_2 - T_1)(T_0^2 + T_1^2)};$$
$$C_2 = \frac{T_2}{(T_1 - T_2)(T_0^2 + T_2^2)}; \alpha_1 = \frac{1}{T_1}; \alpha_2 = \frac{1}{T_2};$$
$$\Theta = -\operatorname{arctg} \frac{T_1}{T_0} - \operatorname{arctg} \frac{T_2}{T_0} - 90^o.$$

При воздействии на вход TT сигнала $x_2(t)$ будем иметь:

$$y_2(p) = x_2(p) \cdot H_{\mathrm{TT}}(p).$$

Сделав подстановку $\delta = t - \tau$ входной сигнал можно представить так:

$$x_{2}(\delta) = (-1)^{n} \sin \omega_{0} \delta;$$

$$x_{2}(p) = \frac{\omega_{0}}{p^{2} + \omega_{0}^{2}} (-1)^{n}.$$

Аналогично решению для $y_1(t)$ определяется реакция:

$$y_2(\delta) = (-1)^n \left[-C\sin(\omega_0\delta + \Theta) + C_1 e^{-\alpha_1\delta} + C_2 e^{-\alpha_2\delta}\right] T_0 B_1,$$

$$\Theta = -\operatorname{arctg} \frac{T_1}{T_0} - \operatorname{arctg} \frac{T_2}{T_0} - 90^o.$$

Поскольку во многих вновь разрабатываемых устройствах защиты, так же как и при осциллографировании, важно иметь на выходе ТТ точные мгновенные значения сигналов, то качество преобразования сигналов ТТ следует характеризовать абсолютной погрешностью преобразования мгновенных значений сигнала, т.е. разностью [5]:

$$\mathcal{E}(t) = K_{\rm TT} x(t) - y(t),$$

где K_{TT} - идеальный коэффициент передачи TT; x(t) и y(t) - входной и выходной, соответственно, сигналы TT.

Для удобства анализа можно принять $K_{TT} = 1$. Тогда

$$\mathcal{E}(t) = x(t) - y(t).$$

На временном интервале от 0 до au будем иметь:

$$\varepsilon(t) = \sin \omega_0 t + T_0 b_1 C \sin(\omega_0 t + \Theta) - T_0 b_1 C_1 e^{-\alpha_1 t} - T_0 b_1 C_2 e^{-\alpha_2 t};$$

$$\varepsilon(t) = \varepsilon_1(t) + \varepsilon_2(t);$$

$$\varepsilon_1(t) = \sin \omega_0 t + K_1 \sin(\omega_0 t + \Theta);$$

$$\varepsilon_2(t) = T_0 b_1 C_1 e^{-\alpha_1 t} - T_0 b_1 C_2 e^{-\alpha_2 t};$$

где $K_1 = T_0 b_1 C$.

Связь погрешностей TT с его параметрами можно установить используя граничные параметры частотных характеристик TT [1,2]:

$$f_{\rm H} = \frac{A_{\rm H}}{\sqrt{1 - A_{\rm H}^2}} \frac{R_2}{2\pi L} = \frac{A_{\rm H}}{\sqrt{1 - A_{\rm H}^2}} \frac{1}{2\pi \tau_{\rm TT}}$$
или $f_{\rm H} = \frac{1}{2\pi \tau_{\rm TT} t g \varphi_{\rm H}}$

Здесь: $f_{\rm H}$ – нижняя граничная частота TT; $A_{\rm H}$ и $\varphi_{\rm H}$ - допустимый относительный уровень амплитудной характеристики и допустимый фазовый сдвиг на нижней границе полосы пропускания TT; $\tau_{\rm TT}$ - постоянная времени TT.

Учитывая реальные соотношения параметров ТТ можно принять:

$$\tau_{\rm TT} = \frac{L}{R_2} = T_1.$$

Как видно, увеличение $au_{\rm TT}$, т.е. T_1 соответствует снижению нижней граничной частоты TT.

Учитывая принятое допущение:
$$T_1 = \frac{L}{R_2}$$
 и то, что $T_2 << T_0$, получим:

$$\begin{split} K_1 &= \frac{T_0 T_1}{\sqrt{(T_0^2 + T_1^2)(T_0^2 + T_2^2)}} \cong \frac{T_1}{\sqrt{T_0^2 + T_1^2}};\\ &\lim_{T_1 \to \infty} K_1 = \lim_{T_1 \to \infty} \frac{T_1}{\sqrt{T_0^2 + T_1^2}} = 1.\\ &\Theta = - arctg \, \frac{T_1}{T_0} - arctg \, \frac{T_2}{T_0} - 90^o \,. \end{split}$$
 Можно принять $\frac{T_2}{T_0} = 0$, тогда $\lim_{T_1 \to \infty} \Theta = \lim_{T_1 \to \infty} \left(-arctg \, \frac{T_1}{T_0} \right) - \frac{\pi}{2} = -\pi \,. \end{split}$

Таким образом, увеличение T_1 вызывает снижение ε_1 :

$$\lim_{T_1\to\infty}\varepsilon_1=0\,.$$

Следовательно можно констатировать, что расширение полосы рабочих частот ТТ в область нижних частот вызывает снижение периодической составляющей погрешности ТТ.

С учетом допущений, принятых ранее, для апериодической составляющей погрешности имеем (рис. 3):

$$\begin{split} \varepsilon_2 &= -\frac{T_0 T_1^2}{(T_2 - T_1)(T_0^2 + T_1^2)} e^{-\alpha_1 t} - \frac{T_0 T_1 T_2}{(T_1 - T_2)(T_0^2 + T_2^2)} e^{-\alpha_2 t} = \\ &\frac{T_0 T_1}{T_0^2 + T_1^2} e^{-\alpha_1 t} - \frac{T_2}{T_0} e^{-\alpha_2 t} \,. \end{split}$$

При реальных параметрах TT $\alpha_2 >> \alpha_1$. Поэтому вторая экспонента (кривая 2) затухает значительно быстрее и погрешность ε_2 через несколько десятков микросекунд после начала процесса определяется, в основном, экспонентой: $K_2 e^{-\alpha_1 t}$ (кривая 1), где

$$K_{2} = \frac{T_{1}T_{0}}{T_{1}^{2} + T_{0}^{2}};$$
$$\lim_{T_{1} \to \infty} K_{2} = \lim_{T_{1} \to \infty} \frac{T_{0}}{2T_{1}} = \lim_{T_{1} \to \infty} \frac{0}{2} = 0$$

Как видно, увеличение Т₁ (что эквивалентно снижению нижней граничной частоты TT) вызывает уменьшение значения первой начального экспоненциальной составляющей погрешности. Характер второй экспоненциальной составляющая погрешности определяется, в основном, величиной T_2 и, практически, не зависит от T_1 .

Рис. 3

После исчезновения входного сигнала при $t \ge \tau$ сигнал на выходе TT не исчезает мгновенно. Это вызывает возникновение погрешности преобразования при $t > \tau$:

$$\mathcal{E}_{\tau} = T_0 b_1 C \sin(\omega_0 t + \Theta) - T_0 b_1 C_1 e^{-\alpha_1 t} - T_0 b_1 C_2 e^{-\alpha_2 t} + (-1)^n \Big[-T_0 b_1 C \sin(\omega_0 \delta + \Theta) + T_0 b_1 C_1 e^{-\alpha_1 \delta} + T_0 b_1 C_2 e^{-\alpha_2 \delta} \Big].$$

При $\delta = 0$ погрешность ε_{τ} равна ε_1 для момента времени τ , т.е. при $t = \tau$ периодическая составляющая $T_0 b_1 C \sin(\omega_0 t + \Theta) - T_0 b_1 C \sin(\omega_0 \delta + \Theta) = 0$. Таким образом, погрешность ε_{τ} определяется суммой четырех экспонент (кривые 1-4):

$$\varepsilon_{\tau} = -T_0 b_1 C_1 e^{-\alpha_1 t} - T_0 b_1 C_2 e^{-\alpha_2 t} + T_0 b_1 C_1 e^{-\alpha_1 \delta} + T_0 b_1 C_2 e^{-\alpha_2 \delta}$$

Для момента $t = \tau$ можно принять $-T_0 b_1 C_2 e^{-\alpha_2 t} = 0$, т.к. коэффициент α_2 велик по сравнению с продолжительностью наблюдаемого процесса. Тогда:

$$\mathcal{E}_{\tau} = -T_0 b_1 C_1 e^{-\alpha_1 t} - T_0 b_1 C_1 e^{-\alpha_1 \delta} + T_0 b_1 C_2 e^{-\alpha_2 \delta}$$

Зависимость ε_{τ} от T_1 аналогична зависимости ε_2 от T_1 , т.е. чем больше T_1 , тем меньше начальное значение экспоненты $T_0b_1C_1$.

На рис.4 показана зависимость погрешности преобразования TT отрезка синусоидального сигнала с частотой $\omega_0 = 314 \text{ c}^{-1}$ и длительностью 3 полупериода от постоянной T_1 (нижней граничной частоты $f_{\rm H}$) и текущего времени *t* в виде поверхности в трехмерном пространстве.

Рис. 4

Для проверки адекватности математической модели изучаемому процессу проведены исследования на физических моделях трансформаторов тока.

На рис. 5 и рис. 6 показаны картины переходных процессов, полученные при физическом моделировании прохождения отрезков сигналов синусоидальной формы через трансформаторы тока с различными постоянными времени T_1 (нижними граничными частотами). Здесь x(t) и y(t) - первичный и вторичный, соответственно, токи TT.

Выходной сигнал TT y(t), для которого $T_1 = 0,004$ с (нижняя граничная частота равна 37 Гц), как видно (см. рис.5) значительно отличается от входного сигнала x(t) по относительному значению амплитуды и фазы. Кроме того, видно, что сигнал на выходе TT при $t > \tau$, как отмечалось и выше, отличается от нуля.

Трансформатор тока, для которого $T_1 = 0,4$ с, преобразует входной сигнал с более высокой точностью (рис. 6). Его погрешность не превышает 5%.

Сравнительный анализ результатов математического и физического моделирования позволил установить, что использованная математическая модель в достаточной степени адекватна исследуемому процессу, а принятые при теоретическом анализе допущения правомерны.

Выводы:

1. Получены зависимости мгновенных значений погрешностей TT (ε) при преобразовании отрезка сигнала синусоидальной формы, анализ которых указывает на необходимость повышения точности работы TT, используемых в современных системах релейной защиты и при осциллографировании аварийных процессов.

2. Исследовано влияние параметров TT на точность их работы. Установлено, что погрешности связаны с параметрами TT экспоненциальными функциями, убывающими при снижении нижней граничной частоты TT. Показано, что TT с большими коэффициентами трансформации (2000/5 и более) и с нижней граничной частотой полосы пропускания до 0,1 Гц, как правило, имеют достаточно хорошие метрологические показатели и могут быть использованы во вновь разрабатываемых системах защиты. Характеристики TT с небольшими коэффициентами трансформации (менее 1000/5) и нижней граничной частотой более 0,1 Гц не удовлетворяют требованиям новых систем защиты по неискажающей передаче сигналов, и требуется их улучшение.

3. Показано, что сужение полосы пропускания ТТ (особенно в области нижних частот) приводит к искажениям выходного сигнала ТТ в переходных режимах при передаче характерных для релейной защиты сигналов. Это служит обоснованием необходимости расширения частотных характеристик ТТ в область нижних частот, что может быть достигнуто за счет увеличения постоянной времени трансформаторов, например, путем снижения номинального вторичного тока.

Список литературы

1. Булычев А.В., Ванин В.К. Исследование частотных характеристик трансформаторов тока // Энергетика (Изв. высш. учеб. заведений) 1987. №8. С.16-21.

2. Ванин В.К., Павлов Г.М. Релейная защита на элементах вычислительной техники.- Л.: Энергоатомиздат, 1991.-336 с.

3. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. - М.: Наука. 1976. - 576 с.

4. Макаров И.М., Менский Б.Б. Линейные автоматические системы. - М.: Машиностроение. 1982. - 504 с.

5. Стогний Б.С. Теория высоковольтных измерительных преобразователей переменного тока и напряжения. - Киев: Наукова думка. 1984. - 272 с.